Biosignal-Based Computing By AHL Induced Synthetic Gene Regulatory Networks - From an in vivo Flip-Flop Implementation to Programmable Computing Agents

نویسندگان

  • Thomas Hinze
  • Thorsten Lenser
  • Naoki Matsumaru
  • Peter Dittrich
  • Sikander Hayat
چکیده

Gene regulatory networks (GRNs) form naturally predefined and optimised computational units envisioned to act as biohardware able to solve hard computational problems efficiently. This interplay of GRNs via signalling pathways allows the consideration as well as implementation of interconnection-free and fault tolerant programmable computing agents. It has been quantitatively shown in an in vivo study that a reporter gene encoding the green fluorescent protein (gfp) can be switched between high and low expression states, thus mimicking a NAND gate and a RS flip-flop. This was accomplished by incorporating the N-acyl homoserine lactone (AHL) sensing lux operon from Vibrio fischeri along with a toggle switch in Escherichia coli. gfp expression was quantified using flow cytometry. The computational capacity of this approach is extendable by coupling several logic gates and flip-flops. We demonstrate its feasibility by designing a finite automaton capable of solving a knapsack problem instance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hill Kinetics Meets P Systems: A Case Study on Gene Regulatory Networks as Computing Agents in silico and in vivo

Modelling and simulation of biological reaction networks is an essential task in systems biology aiming at formalisation, understanding, and prediction of processes in living organisms. Currently, a variety of modelling approaches for specific purposes coexists. P systems form such an approach which owing to its algebraic nature opens growing fields of application. Here, emulating the dynamical...

متن کامل

Design and Test of New Robust QCA Sequential Circuits

   One of the several promising new technologies for computing at nano-scale is quantum-dot cellular automata (QCA). In this paper, new designs for different QCA sequential circuits are presented. Using an efficient QCA D flip-flop (DFF) architecture, a 5-bit counter, a novel single edge generator (SEG) and a divide-by-2 counter are implemented. Also, some types of oscillators, a new edge-t...

متن کامل

A new low power high reliability flip-flop robust against process variations

Low scaling technology makes a significant reduction in dimension and supply voltage, and lead to new challenges about power consumption such as increasing nodes sensitivity over radiation-induced soft errors in VLSI circuits. In this area, different design methods have been proposed to low power flip-flops and various research studies have been done to reach a suitable hardened flip-flops. In ...

متن کامل

High-performance and Low-power Clock Branch Sharing Pseudo-NMOS Level Converting Flip-flop

Multi-Supply voltage design using Cluster Voltage Scaling (CVS) is an effective way to reduce power consumption without performance degradation. One of the major issues in this method is performance and power overheads due to insertion of Level Converting Flip-Flops (LCFF) at the interface from low-supply to high-supply clusters to simultaneously perform latching and level conversion. In this p...

متن کامل

The Effects of Strained Multiple Quantum Well on the Chirped DFB-SOA All Optical Flip-Flop

In this paper, based on the coupled-mode and carrier rate equations, a dynamic model and numerical analysis of a multi quantum well (MQW) chirped distributed feedback semiconductor optical amplifier (DFB-SOA)  all-optical flip-flop is precisely derived. We have analyzed the effects of strains of QW and MQW and cross phase modulation (XPM) on the dynamic response, and rise and fall times of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008